
PolySCIP user guide
Sebastian Schenker

Contents
1 General information 1

2 Installation 1

3 Usage 1

4 File format 3

5 User-friendly .mop file generation 4

1 General information
PolySCIP is a solver for multi-criteria integer programming problems and multi-criteria
linear programming problems. In other words, it aims at solving optimization problems
of the form:

min / max (c>1 x, . . . , c>k x)
s.t. Ax ≤ b,

x ∈ Zn ∨Qn,

where k ≥ 2, A ∈ Qm×n, b ∈ Qm.
The name PolySCIP is composed of Poly (from the Greek πολύς meaning “many”)

and SCIP. PolySCIP is part of SCIP and its source code resides in the ’applications’
directory.

2 Installation
See the INSTALL file in the PolySCIP directory or the section ’Installation’ at http:
//polyscip.zib.de.

1

http://scip.zib.de
http://polyscip.zib.de
http://polyscip.zib.de

3 Usage
The problem file (in MOP format) is the only mandatory command line argument:
polyscip path_to_problem_file/problem_file.mop

runs PolySCIP on the given problem file. To switch off the SCIP solver output you can
execute
polyscip -p scipmip.set path_to_problem_file/problem_file.mop

where scipmip.set is an existing SCIP parameter file (in the PolySCIP folder) contain-
ing the line display/verblevel=0.
To get a complete list of available PolySCIP command line arguments execute

polyscip -h

-h, --help Display usage information and exit

-p | --params <param_file.set> Specify a file consisting of SCIP parameter settings
• PolySCIP comes with the parameter settings file scipmip.set
• A list of all available SCIP parameters is available at http://scip.zib.de
• To switch, e.g., the verbosity level of the internal SCIP solution process to 1,
write display/verblevel=1 in the scipmip.set file and run polyscip with -p
scipmip.set

-W | --writeSolsPath <path> Path where the solution file should be written to if -w
was set

-e | --Epsilon <double> Specify epsilon used in computation of unsupported points;
the default value is 1e-3

-d | --Delta <double> Specify delta used in computation of feasible boxes; the default
value is 0.01

-r | –round <5|10|15> Round the weighted objective coefficient used in the function
’setWeightedObjective’ at the ’r’-th decimal position; this might be helpful in case
of numberical troubles with unbounded rays

-t | --timeLimit <seconds> Set a time limit in seconds on the overall SCIP computa-
tion time

-o | --noOutcomes Switch off the output of computed outcomes

-s | --noSolutions Switch off the output of computed solutions

-w | --writeResults Write results to a file; default path is ./

-v | --verbose Switch on verbose PolySCIP output

-x | --extremal Compute only supported non-dominated extreme point results

--version Display PolySCIP version

2

http://scip.zib.de/doc/html_devel/PARAMETERS.php
http://scip.zib.de

4 File format
The PolySCIP file format (with suffix .mop) is based on the widely used MPS file format
(see [1], [2]). MPS is column-oriented and all model components (variables, rows, etc.)
receive a name. An objective in MPS is indicated by an N followed by the name in the
ROWS section. Similarly, in the MOP format the objectives are indicated by N followed
by the name in the ROWS section. In general, MPS might not be as human readable as
other formats. However, one of the main reasons to base the file format of PolySCIP
on it is its easy extension towards several objectives and its wide availability in most of
the linear and integer programming software packages such that available MPS parsers
could easily be adjusted to parse an .mop file as well. Furthermore, no user is expected
to write .mop files by hand, but to use a modelling language that does the job. See
Section 5 for a description of how to use the freely available Zimpl and the Python
script mult_zimpl_to_mop.py (comes with PolySCIP) to generate .mop files.

The following simple equation-based bi-criteria integer problem

maximize Obj1: 3x1 + 2x2 − 4x3

Obj2: x1 + x2 + 2x3

subject to
Eqn: x1 + x2 + x3 = 2 (1)
Lower: x1 + 0.4x2 ≤ 1.5

x1, x2, x3 ≥ 0
x1, x2, x3 ∈ Z

is written in MOP format as follows:

NAME BICRIT
OBJSENSE
MAX
ROWS
N Obj1
N Obj2
E Eqn
L Lower
COLUMNS

x#1 Lower 1
x#1 Eqn 1
x#1 Obj2 1
x#1 Obj1 3
x#2 Lower 0.4
x#2 Eqn 1
x#2 Obj2 1
x#2 Obj1 2

3

http://zimpl.zib.de

x#3 Eqn 1
x#3 Obj2 2
x#3 Obj1 -4

RHS
RHS Eqn 2
RHS Lower 1.5

BOUNDS
LI BOUND x#1 0
LI BOUND x#2 0
LI BOUND x#3 0

ENDATA

5 User-friendly .mop file generation
Zimpl is a freely available modelling language (also part of the SCIP Optimization
Suite) to translate a mathematical model of a problem into a mathematical program
in .mps (or .lp) file format. Together with the mult_zimpl_to_mop.py script (located
in the ’mult_zimpl’ directory of PolySCIP) it can/should be used to generate your
.mop files. For a more detailed description of Zimpl, see the Zimpl user guide. In this
section we will only describe how to make use of it, but not all options how to write
different models. Zimpl does generally not support several objectives; this is where
mult_zimpl_to_mop.py comes into play. It takes an ’extended’ Zimpl file containing
several objectives, internally rewrites all but the first objectives into constraints, calls
Zimpl on the rewritten file and changes the file generated by Zimpl containing ’artificial’
constraint indicators back to objective indicators which yields an .mop file.

• Zimpl comes with the SCIP Optimization Suite
– Please see the INSTALL file of the SCIP Optimization Suite (you basically

just need the GMP library in order to build).

• mult_zimpl_to_mop.py is a Python3 script and comes with PolySCIP; it is located
in the ’mult_zimpl’ directory
– Execute python3 mult_zimpl_to_mop.py your_model.zpl to run it on the

file your_model.zpl containing your multi-criteria model
– The following command line arguments are available
-h, --help Show the help message and exit
-o <basename> Basename used for the output file; the default is the base-

name of the input file
-p <path> Directory where the generated .mop file should be saved
--path_to_zimpl <path> Directory where your zimpl binary can be found

4

http://zimpl.zib.de
http://zimpl.zib.de/download/zimpl.pdf
http://scip.zib.de/#scipoptsuite

E.g., if the Zimpl executable is not installed globally but in /home/user/bin, and,
furthermore, you would like to save the generated .mop file under /tmp, then exe-
cute python3 mult_zimpl_to_mop.py -p /tmp/ –path_to_zimpl /home/user/bin
model.zpl

Please note (in the following examples) that the direction of optimization, i.e., minimize
or maximize, is declared only once followed by the first objective. All other objectives
follow without a direction specification implying that all objectives are assumed to be
either minimized or maximized.

Example 5.1. The bi-criteria maximization problem (1) can be modelled as follows:

set I := {1..3};
param c1[I] := <1> 3, <2> 2, <3> -4; #coefficients of the first objective
param c2[I] := <3> 2 default 1; #coefficients of the second objective
param low[I] := <1> 1, <2> 0.4, <3> 0; #coefficients of the lower constraint
var x[I] integer >= 0;

maximize Obj1: sum <i> in I: c1[i]*x[i];
Obj2: sum <i> in I: c2[i]*x[i];

subto Eqn: sum <i> in I: x[i] == 2;
subto Lower: sum <i> in I: low[i]*x[i] <= 1.5;

Saving the file, e.g., as test.zpl and running mult_zimpl_to_mop.py on it would gen-
erate a file named test.mop which can be solved with PolySCIP.

Example 5.2. Assume you want to model a tri-criteria assignment problem and your
data is stored in a file named my_data.txt in the following format:
3
5
6, 1, 20, 2, 3,
2, 6, 9, 10, 18,
1, 6, 20, 5, 9,
6, 8, 6, 9, 6,
7, 10, 10, 6, 2
,
17, 20, 8, 8, 20,
10, 13, 1, 10, 15,
4, 11, 1, 13, 1,
19, 13, 7, 18, 17,
15, 3, 5, 1, 11
,
10, 7, 1, 19, 12,
2, 15, 12, 10, 3,
11, 20, 16, 12, 9,

5

10, 15, 20, 11, 7,
1, 9, 20, 7, 6

The first line specifies the number of objectives, the second line specifies number of
variables and the following three 5× 5 matrices contain the objective value coefficients.
The tri-criteria assignment problem could then be modeled as follows:

param prob_file := "my_data.txt";
param no_objs := read prob_file as "1n" use 1;
param no_vars := read prob_file as "1n" use 1 skip 1;

set I := {1..no_vars};
set T := {1..no_objs*no_vars*no_vars};
param coeffs[T] := read prob_file as "n+" match "[0-9]+" skip 2;
param offset := no_vars*no_vars;
param Obj1[<i,j> in I*I] := coeffs[(i-1)*no_vars + j];
param Obj2[<i,j> in I*I] := coeffs[(i-1)*no_vars + j + offset];
param Obj3[<i,j> in I*I] := coeffs[(i-1)*no_vars + j + 2*offset];

var x[I*I] binary;

minimize Obj1: sum <i,j> in I*I: Obj1[i,j]*x[i,j];
Obj2: sum <i,j> in I*I: Obj2[i,j]*x[i,j];
Obj3: sum <i,j> in I*I: Obj3[i,j]*x[i,j];

subto row: forall <i> in I do
sum <j> in I: x[i,j] == 1;

subto col: forall <i> in I do
sum <j> in I: x[j,i] == 1;

Again, saving the file, e.g., as testCube.zpl and running mult_zimpl_to_mop.py on it
would generate a file named testCube.mop which can be solved with PolySCIP.

Please see the Zimpl user guide for more modelling details.

References
[1] MPS format (short), https://en.wikipedia.org/wiki/MPS_%28format%29

[2] MPS format (detailed), http://lpsolve.sourceforge.net/5.5/mps-format.htm

[3] ZIMPL webpage, http://zimpl.scip.de

6

http://zimpl.zib.de/download/zimpl.pdf
https://en.wikipedia.org/wiki/MPS_%28format%29
http://lpsolve.sourceforge.net/5.5/mps-format.htm
http://zimpl.scip.de

	General information
	Installation
	Usage
	File format
	User-friendly .mop file generation

